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ABSTRACT 

Electrical Impedance Tomography (EIT) is a 
recent monitoring technique that allows us to 
obtain images representing a transversal plane of 
human body section. The images are obtained by 
applying a sequence of low intensity electrical 
currents, through electrodes positioned around 
human body. The EIT deals with inverse problem 
solution. In this work, the main objective is to 
apply Topology Optimization Method (TOM) to 
obtain images of body section by using EIT. The 
TOM is an iterative method whose computational 
algorithm combines Finite Element Method and 
an optimization algorithm. TOM applied to obtain 
images of body consists of finding the 
conductivity distribution in the body section 
domain that minimizes the difference between 
electric potential measured on electrodes and 
electric potential calculated by using a 
computational model. This work contributes on 
development of image reconstruction algorithms 
applied to monitor accurately mechanical 
ventilation of lungs. Image reconstruction results 
obtained by using numerical data are shown. 

 
Keywords: Electrical Impedance Tomography, 
Topology Optimization, Finite Element Method, 
Sequential Linear Programming.  

 
INTRODUCTION 

During the last years of century XX, modern 
techniques have been developed to observe the 
interior of human body with strong tendency to 
minimal invasive surgical intervention. Ever 
since, the tomography techniques became the 
most important way to obtain medical images. 
Among all of them, the tomographies by x-ray 
and by magnetic resonance are the most common 
techniques. However, since the beginning of 90´s 
years, other technique called Electric Impedance 

Tomography (EIT) has been studied as an 
interesting alternative for obtaining images in 
clinical applications. Essentially, EIT consists in 
obtaining images that represent any transversal 
plane section of human body (head, thorax, thigh, 
etc), where each pixel in the image is related to its 
corresponding value of electrical conductivity. A 
sequence of low intensity electrical currents is 
applied to the body section, through electrodes 
positioned around the patient’s body and aligned 
in a plane corresponding to a transverse section of 
the body, as illustrated in Fig. 1. 

 
 

section of
human body

electrodes

 
 

Figure 1 – Electrodes positioned around the body. 
  
In EIT, an inverse problem must be solved [1], 

that is, by injecting known amounts of electrical 
current, according to an excitement pattern 
(adjacent), and measuring the electrical potential 
field (voltages) at electrodes on the boundary of 
the body, it estimates and construct a map of the 
conductivity distribution of region of the body 
probed by the electric currents. 

Although EIT image quality is expected to 
have relatively poor resolution, compared to other 
tomography techniques, it has some very 
attractive features for clinical applications such as 
monitoring lung fluid, monitoring of heart 
function and blood flow, detecting tumors and 
others [1]. The technology for EIT is safer and 
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cheaper than other techniques, as resonance 
magnetic tomography. Moreover an EIT device is 
short and portable which allows its installation for 
continuous monitoring of bedridden patients, 
which avoids dangerous patient transportation 
from ICU (Intensive Care Unit) to the exam 
room. In this technique the patient does not have 
exposition to any type of radiation, just to the low 
electrical current levels that do not cause any 
harm to the patient [2]. 

This work presents results obtained from 
computational algorithm that applies the 
Topology Optimization Method (TOM) to 
reconstruct images of body section by using EIT 
technique. TOM tries to find systematically a 
material distribution inside of a design domain 
(the section of body), to satisfy an objective 
function requirement and specified constraints. 
The problem of applying TOM to obtain an image 
of body section consists in finding a conductivity 
distribution in the body section domain that 
minimizes the difference between electric 
potential measured on electrodes and electric 
potential calculated by using a computational 
model. Conductivity distribution is related to 
material distribution inside of the domain and 
thus to the voltage values measured on electrodes 
positioned at domain boundary. The solution of 
the topology optimization problem is obtained by 
combining Finite Element Method (FEM) and an 
optimization algorithm called Sequential Linear 
Programming (SLP). 

The next sections show some related works in 
EIT and TOM, the FEM model for the conductive 
medium, the topology optimization problem 
formulated to obtain image by using EIT, the 
numerical implementation to solve that 
optimization problem and the sensitivity analysis 
of the topology optimization problem. Image 
reconstruction results by using numerical data of 
well-know domains are also shown. Finally, in 
the last section, the conclusions are given. 

 
SOME FEATURES ABOUT EIT AND TOM 

 
The first studies and theoretical formulations 

for implementation of image reconstruction 
algorithms that constructed the foundation for EIT 
in practical applications medicine emerged in the 
80’s years in the University of Sheffield 
(England). Researchers of this university studied 
the EIT technique and described its practical 
application in medicine such as the monitoring of 
lung, heart and gastric functions, for instance. 

They are practically the pioneers in the 
formulation of theories and data, which built the 
EIT foundation until the present moment, and 
developed the first commercial EIT device based 
on the Backprojection method [3]. This device 
has a scheme called APT system (Applied 
Potential Tomography), which is composed by a 
simple source of electric current with 16 
electrodes and it uses the adjacent pattern for 
application of the electrical current. This APT 
system has the advantage of simplicity of design, 
but its image quality is intrinsically limited. 
Although this APT system just allows us to obtain 
images of low resolution, it has been used in 
studies of several medical procedures as the 
monitoring of the blood flow in the thorax and 
lung problems. In the 90’s years, researchers of 
Rensselear Polytechnic Institute (USA) designed 
and built another EIT device that it has a scheme 
called ACT system (Adaptive Current 
Tomography) with 32 electrodes, which is able to 
obtain 20 static images per second [1]. This 
device uses a “fast” method for image 
reconstruction, which is based on the One-Step 
Newton method. In Brazil, the development of a 
EIT device has been studied by researchers of the 
University of São Paulo in a thematic project 
whose objective is to study algorithms 
reconstruction for EIT to monitor accurately the 
mechanical ventilation of lungs [2] and to 
diagnose when any portion of lungs is damaged 
(obstructed or collapsed) during mechanical 
ventilation process. 

The application of Topology Optimization 
Method (TOM) [4] is not recent and it began in 
the mechanical structural area, where the method 
demonstrated its great potentiality in the design of 
mechanical parts with maximum stiffness and 
smaller weight. Thus, it had been used broadly in 
the design of optimized parts at the automotive 
and aeronautics industries in the United States, 
Japan and Europe. In addition, TOM was applied 
recently to design compliant mechanisms and 
piezoelectric actuators [5]. TOM is a generic and 
systematic and iterative method that combines 
optimization algorithms with an analysis method, 
in general the Finite Element Method (FEM), to 
distribute the material inside of a fixed design 
domain (region limited by the boundary 
conditions) to maximize or to minimize a 
specified objective function. In the TOM, the 
fixed design domain is divided into several finite 
elements and its FEM mesh is not changed during 
the optimization process. The material in each 
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point of the fixed design domain can change from 
a material type A to another one type B, assuming 
intermediate materials between A and B in 
according to material model, which defines the 
mixture of two or more materials. 

In this work, the material model used is 
known as Density Method [5]. Thus, considering 
the domain has been discretized in N finite 
elements, the conductivity properties (ci) of each 
element can be given in the following way: 

 

( )i i A i B i1 ;  0 1, i 1...N
ppρ ρ ρ= + − ≤ ≤ =c c c      (1) 

 
where cA and cB are the conductivity properties of 
the base materials that compose the domain. In 
that case the material A could be air, for instance, 
and the material B could be the tissue of the 
lungs. The values of each ρ i can change from 0 
(only material B) to 1 (only material A). Excess 
of mixture of the two materials (values between 0 
and 1) is not interesting in the final result and 
should be avoided by use of penalization 
parameter p, whose value must be adjusted [5]. 

 
FEM MODEL 

 
In this work, the design domain is discretized 

by four nodes quadrilateral elements, where the 
electric potentials in all nodes are obtained by 
using FEM analysis considering application of 
electric currents to the boundary nodes of the 
domain. The FEM formulation applied to 
conductive medium [6] is generated from 
electrical conductivity equations, which are given 
by: 

 

( ) 0div σ φ∇ = ; 
nI .

n

σ φ
φσ φ σ

= ∇


∂ = ∇ = ∂

I

n
     (2) 

 
where φ is the electric potential, σ is the electric 
conductivity, n is a normal vector to the boundary 
of domain, I is the electrical current vector (in 
ampere per square meter), In is a component of 
the electrical current in the direction n, div is the 
divergent operator and ∇  is the gradient operator. 

Thus, the FEM formulation consists in 
substituting approximation functions of the 
electric potential into the integral form of the 
electric conductivity equations of Eq. (2) to 
calculate the electric potentials distributed in the 
discretized domain through a system of 

equilibrium equations, whose matrix formulation 
is given by [7]: 

 
K Φ = I         (3) 

 
where K is the global FEM electric conductivity 
matrix of discretized domain, Φ is a vector of 
nodal electric potential and I is a vector of nodal 
electric current. 

The nodal electric potential is obtained from 
electric current applied to metal electrodes 
positioned on the boundary design domain. In 
addition to represent the distribution of the 
electric field for the contact resistance of these 
electrodes an electrode model, proposed by Hua 
et al. [8], has been used. In that model, the electric 
potential for nodes 4, 5 and 6 of the electrode 
elements (see Fig. 2) are assumed to be equal (φ4 
= φ5 = φ6). 
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Figure 2 – Electrode model. 
 
The electrical conductivity matrix (kel) of the 

electrode element is given by: 
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k       (4) 

 
where a  is the half width of an electrode, t is the 
thickness of the contact interface (electrode-skin) 
and ρ is the resistivity (inverse of the 
conductivity) value of the contact interface. The 
product ρ t is known as contact impedance of 
electrode elements. Each electrode element matrix 
kel is inserted in the global matrix K in according 
to its connectivity. 
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TOPOLOGY OPTIMIZATION PROBLEM 
APPLIED TO EIT 

 
The image reconstruction by EIT using TOM 

can be interpreted as a problem of finding the 
material distribution inside the domain that 
reproduces the measured electric potential values 
at electrodes. In that way, the optimization 
problem whose solution has been studied with 
TOM, could be: 

 

Minimize:  ( )2

ij ij0
j 1 i 1

1
F

2

npne

φ φ
= =

= −∑∑       (5) 

Such that:   electrical conductivity equation  
     i0 1    i 1...Nρ≤ ≤ =  

 
where F is the objective function related to the 
difference between the values of electric potential 
measured on the electrodes (φ ij0) and calculated in 
the computational model of the domain (φ ij). The 
ne and np values are the number cases of applied 
current load and the number of measurement 
points (electrodes), respectively, and ρ i are the 
design variables related to the amount of material 
in each element of the domain. The optimization 
problem above is an ill-posed problem, which 
finds different distributions of conductivities in 
the domain that yield the same voltage values on 
electrodes. However, the application of TOM to 
this problem makes possible the inclusion of 
several constraints in the reconstruction image 
problem, restricting the solution space easily and 
avoiding images without clinical meaning. 

 
NUMERICAL IMPLEMENTATION 

 
The solution of topology optimization 

problem shown in Eq. (5) is obtained numerically 
by iterative algorithm optimization which steps 
are shown in Fig. 3. The FEM model of the 
design domain is supplied to the algorithm as 
initial data. By analysis of the FEM model, the 
electric potentials are calculated, allowing us to 
obtain the objective function and constraints 
values. In next step, the optimization is done, by 
using the gradients of the objective function and 
constraints, relative to design variables. The 
optimization algorithm is started with a uniform 
distribution of material for whole design domain 
and it supplies a new material distribution (design 
variable), which is updated in the FEM analysis. 
The iteration steps continue until the convergence 
for the objective function value is achieved. 
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Data Input
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yes

no
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Figure 3 – Flowchart of the TOM algorithm. 
 
In this work, the optimization algorithm used 

to solve the optimization problem of Eq. (5) is 
known as Sequential Linear Programming (SLP), 
which has been successfully applied to topology 
optimization. The SLP allows us to work with a 
large number of design variables and complex 
objective functions, and solves a non-linear 
optimization problem considering it as a sequence 
of linear sub-problems, which can be solved with 
Linear Programming (LP). The non-linear 
optimization problem of Eq. (5) is linearized by 
writing a Taylor series expansion for the objective 
function considering only the terms with 
derivative of first order. For that approach to be 
valid it is necessary to limit the variation of value 
of the design variables in each linear sub-problem 
by using of moving limits [9]. In each iteration of 
topology optimization process, the SLP algorithm 
finds the optimum value for the design variables, 
that it will be used in the subsequent iteration as 
initial value. Thus, this process continues 
successively until convergence of the solution. 

  
SENSITIVITY ANALYSIS 

 
The gradients of the objective function and 

constraints are known as sensitivities of topology 
optimization problem. These gradients are used in 
the SLP for obtaining the linear sub-problems and 
its mathematical formulation is obtained by using 
the mutual energy concept. 

Applying the chain rule to the Eq. (5), the 
derivative of the objective function in relation to 
design variables (ρ) of the optimization problem, 
can be written in the following form: 
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( )ij ij
ij ij0

j=1 i=1ij

dF F

d

npneφ φ
φ φ

ρ φ ρ ρ
∂ ∂∂= = −

∂ ∂ ∂∑∑       (6) 

 
The derivative of the Eq. (6) is determined by 

using the extension of Maxwell’s reciprocity 
theorem [10] where if a body is submitted 
simultaneously to two cases of applied electric 
current load and using FEM formulation, we can 
say that: 

 
T T
1 2 2 1=I � � �          (7) 

 
where I is the applied electric current vector, Φ is 
the electric potential vector, the index 1 and 2 
indicates first and second case of applied current 
load and T indicates the transposition of the 
vector. 

Initially, we admit a fictitious excitement   as 
a electric current vector of second case load (I2) 
whose only non-zero component is a unit current 
applied to one point of the body. Thus, using 
equilibrium equation from FEM formulation (Eq. 
(3)) and using the Eq. (7), we obtain: 

 
T
1 2 1φ=� � �         (8) 

 
where K is the symmetric global matrix. From 
derivation of two sides of the Eq. (8) relative to 
design variables of the problem optimization, we 
obtain: 

 

( ) ( )T
1 2 1φ
ρ ρ

∂ ∂
=

∂ ∂

� � �

        (9) 

 
The gradient of the left side of the Eq. (9) is 

the derivative of the mutual energy of the system, 
which is developed in the following form:  

 
T

T T1 2
2 1 2 1ρ ρ ρ

∂ ∂∂+ +
∂ ∂ ∂
� �K

K � � � � �    (10) 

 
Deriving the equilibrium equation K Φ1 = I1 

(first load case) relative to design variables and 
considering that the electric current I1 does not 
change with design variables, we have:  

 

11
1ρ ρ

−∂ ∂= −
∂ ∂
� K

K �      (11) 

 
Thus, transposing the Eq. (11), we obtain: 

�

� �1
1ρ ρ

−∂ ∂= −
∂ ∂
� K

� �      (12) 

 
Likewise, deriving the equilibrium equation of 

second load case, and substituting this derivative 
and the result of Eq. (12) in Eq. (10) and 
simplifying, we obtain: 

 

( )T
1 2 T

1 2ρ ρ
∂ ∂= −

∂ ∂

� � � K
� �     (13) 

 
Thus, the Eq. (9) can be written in the 

following way: 
  

1T
1 2

φ
ρ ρ

∂∂− =
∂ ∂
K

� �      (14) 

 
In the EIT, some measurements around of the 

body section (i = 1 to np) in different points are 
made for all cases (j = 1 to ne) of applied current 
load. Thus, we consider the first measurement 
point (i = 1) and the fictitious electrical 
excitement to be a vector whose components are: 

 

{ }T
1j 1j 1j0( ) 0 0 0φ φ= −I �     (15) 

 
where the electric current vector above produces 
in the domain Ω a potential field Φ1j. It is known 
that the electric current (φ 1j – φ 1j0) is constant 
during the load case. Thus, applying the Eq. (14) 
we have: 

  

1jT
j 1j 1j 1j0( )

φ
φ φ

ρ ρ
∂∂− = −

∂ ∂
K

� �     (16) 

 
Then, if the procedure is repeated in 

analogous way to the first measurement until np 
measurement points, we have: 

 

jT
j j j j0( ) np

np np np

φ
φ φ

ρ ρ
∂∂− = −

∂ ∂
K

� �     (17) 

 
Now, the development of the first summation 

(1 to np) of the Eq. (6) is: 
 

( ) ( ) ( )1j 2 j j
1j 1j0 2 j 2 j0 j j0

j 1

dF

d

ne
np

np np

φ φ φ
φ φ φ φ φ φ

ρ ρ ρ ρ=

∂ ∂ ∂ 
= − + − + + − ∂ ∂ ∂ 

∑ �

 

       (18) 

By comparison of the Eq. (18) with the 
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development for obtain Eq. (17) and considering 
np measurement points and grouping the similar 
terms, we conclude that: 

 

( )T
j 1j 2 j j

j 1
"
j

F ne

npρ ρ=

∂ ∂= − + + +
∂ ∂∑ K

� � � �

�

�

�����������

   (19) 

As the FEM formulation is linear, we can 
obtain the summation of electric potentials of Eq. 
(19) by applying electric current to all np 
measurement points simultaneously, as illustrated 
in Fig. 4. 

 
 

ΩΩ

jΙ
1j 1j0 )φ φ( −

j�
"
j�

2 j 2 j0 )φ φ( −

3 j 3 j0 )φ φ( −

4 j 4 j0 )φ φ( −

5 j 5 j0 )φ φ( −

 
      1st load case  2nd load case 

 
Figure 4 – Application of all measurement point. 

 
Thus, the vector "

j�  can be calculated through 

the equilibrium equation " "
j j=K� � . 

Therefore, considering ne applied load cases 
and np measurement points, the expression to 
calculate of derivative of the objective function is 
given by: 

  

T ''
j i j

j=1 i=1

dF

d

npne

ρ ρ
 ∂= − ∂ 

∑∑ Kφ φ     (20) 

 
Thereby, the procedure described above saves 

a lot of computational time to calculate the 
gradients of objective function. 

 
RESULTS 

 
The topology optimization problem for 

obtaining image by EIT is implemented in a 
software which is programmed using C language. 
In this section, some examples will be presented 
to illustrate image reconstruction. For all 
examples, the applied electric current load is 
considered equal to 1 mA. Moreover, in these 
examples, the topology optimization algorithm 
uses penalization coefficient value (p) equal to 2, 

and it assumes 0.15 as initial value for design 
variables at starting of the SLP. 

The images reconstructed here are shown in 
Fig. 5. In this case, the dark and clear region 
simulates a material with low conductivity 
(10��(Ω.m)��) and high conductivity 
(5.882×10��(Ω.m)��), respectively. In practice, 
this situation would be equivalent to obtain some 
regions with presence of air in the tomography of 
a water-like domain, for instance. 

 
 

 
    a)     b) 

 
Figure 5 – Images to be reconstructed: a) one 

region; b) two regions. 
 

The images are obtained from elliptical 
domain whose major axis is 400 mm. In this 
work, numerical data is used for image 
reconstruction. Thus, two different FEM models 
were built. Their meshes use quadrilateral finite 
elements (with thickness equal to 35 mm) and are 
generated by using mesh generator of ANSYS 
software. 

First model has a fine mesh (3072 elements) 
and it is used to simulate accurately the electric 
potential distribution inside of the elliptical 
domain (numerical phantom). The electric 
potential distribution, considering the elliptical 
domain without regions or with one and two 
regions (see Fig. 5), are calculated through this 
phantom which are used in image reconstruction 
procedure as the electric potential measured        
(φ ij0). In this case, a chosen value equal to 
100(Ω.m2)�� is considered as parameter 1/ρ t 
(inverse of contact impedance) of matrix kel of 
Eq. (4). 

The second model has a coarse mesh (1120 
elements, see Fig. 6) and it is used for image 
reconstruction, having fewer design variables 
which saves computational time. Moreover, if the 
software reconstructs the desired image in a 
coarse mesh by using information of a refined 
mesh, it demonstrates that implemented algorithm 
is robust to deal with error of electric potential 
values, simulated here by two different 
discretizations of the domain. 
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Figure 6 – Discretized domain (mesh with 1120 
quadrilateral elements) 

 
In this work, to obtain a good quality image 

for clinical applications in EIT, 32 electrode 
elements (whose width equal to 10 mm) are 
uniformly positioned along the boundary of the 
design domain [11]. To find the nodal electric 
potentials in these electrode elements a pair of 
them is excited electrically, following an adjacent 
pattern, where one of them is made to be null 
potential (“ground”) and other (neighbor) receives 
the low intensity electric current. Thereby, for 
obtaining the image desired in the EIT, the pair of 
electrodes (electrically excited) is changed 
successively until enough number of observations 
under different angles is obtained. Therefore, in 
total, a sequence of 32 patterns of electrical 
excitement of the same type (adjacent) is applied 
to obtain the desired image here. 

Following, image reconstruction procedure is 
described. This procedure is divided in two steps: 
obtaining of contact impedance values of the 
electrode elements and obtaining desired image. 
 
Obtaining of contact impedance values 

 
The contact impedance values of the electrode 

elements (product of ρ and t in Eq. (4)) must also 
be obtained through the software implemented. In 
this case, the contact impedance values are design 
variables, which are obtained numerically through 
the iterative topology optimization algorithm. The 
obtained electric potential distribution inside of 
the numerical phantom, containing just one 
material (without regions), is initially considered. 
After that, by using these electrical potentials as 
the electric potential measured (φ ij0) and the 
coarse mesh (1120 elements, see Fig. 6), the 
software obtains the contact impedance values of 
the electrode elements considering any initial 
guess of contact impedance values in the 
optimization process. In this example, we expect 
to recover the contact impedance values adopted 

for the numerical phantom. The obtained values 
(1/ρ t) in this simulation are shown in Table 1. 

 
 

electrode 1/ρ t electrode 1/ρ t electrode 1/ρ t electrode 1/ρ t

1 51.0 9 62.3 17 34.0 25 84.3
2 103.0 10 93.1 18 93.3 26 93.1
3 93.1 11 93.3 19 84.3 27 93.1
4 84.3 12 84.3 20 93.3 28 93.1
5 84.3 13 93.3 21 93.1 29 93.1
6 84.3 14 84.3 22 93.1 30 93.0
7 68.9 15 84.3 23 84.3 31 103.0
8 126.0 16 100.0 24 93.1 32 114.0  
   

Table 1 – Contact impedance values. 
 
According to table above, the most of contact 

impedance values were obtained closer than the 
expected values (100(Ω.m2)�� for all electrode 
elements). The errors between the obtained and 
the expected contact impedance values are 
justified, since the software obtains the optimal 
contact impedance values for the coarse mesh. 

 
Obtaining Desired Image 

 
 In this step the software reconstructs the 
desired image by using the information about 
electric potentials calculated through the 
numerical phantom as electric potential measured 
(φ ij0), considering the domain with one and two 
regions. The contact impedance values obtained 
in previous step are also used. 

Following the images obtained by applying 
adjacent pattern are shown. First, Fig. 7 shows 
image and convergence curve obtained of desired 
image with one dark region. The obtained image 
and convergence curve of desired image with two 
dark regions are shown in Fig. 8. 

 
 

  
        a) tomography image       b) convergence curve 
 

Figure 7 – Obtained image and convergence 
curve (one region). 

 
 According to convergence graphs, shown in 
Fig. 7b) and Fig. 8b), it is verified that the 
objective function fell quickly to a minimum 
value (20 iterations approximately), however they 
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        a) tomography image       b) convergence curve 
 

Figure 8 – Obtained image and convergence 
curve (two regions). 

 
continue iteration by iteration with very small 
oscillation until the best image for the 
tomography examination is found (~50 
iterations). It is noticed the objective function 
converges to a minimum value equal to 0.0245 
for image with one region and 0.0285 for image 
with two regions. The absolute electric 
conductivity values of elements in the dark region 
are closer than the expected original value 
(approximately an average of 90%). This 
optimization result corresponds to a local 
optimum and we believe that it could be 
improved. 

 
CONCLUSIONS 

 
An algorithm of Topology Optimization 

Method (TOM) applied to Electrical Impedance 
Tomography (EIT) was proposed for image 
reconstruction. The software, written in C 
language, was implemented to accomplish the 
iterative process of TOM. According to obtained 
results, the software is able to obtain, from 
numerical data, in some sets of ten iterations and 
with a certain level of acceptable precision, the 
contact impedance values of interface electrode-
skin and the values of absolute conductivity of 
two materials inside of the domain and 
consequently the desired image. Some 
improvement is still necessary to work with 
experimental data, where noise is considered. 
However, since good results were obtained by 
using a coarse mesh, it demonstrates that 
implemented method is robust, and we believe 
that it will be succesful to deal with experimental 
data. The TOM algorithm, studied in this work, 
could be improved for obtaining images of the 
lung through EIT device. The TOM allows us to 
include some constraints in the problem of image 
reconstruction limiting the solution space in 
tomography examination and avoiding images 
without clinical meaning. For instance, it is 

possible to limit in the design domain the area 
where presence of air in the lung can occur, and 
in addition it allows us to work with known areas 
inside the domain (bone, heart, etc). 
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